Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Markers ; 39(2): 168-183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38646803

RESUMEN

BACKGROUND: The comprehensive expression level and potential molecular role of Cyclin A2 (CCNA2) in uterine corpus endometrial carcinoma (UCEC) remains undiscovered. METHODS: UCEC and normal endometrium tissues from in-house and public databases were collected for investigating protein and messenger RNA expression of CCNA2. The transcription factors of CCNA2 were identified by the Cistrome database. The prognostic significance of CCNA2 in UCEC was evaluated through univariate and multivariate Cox regression as well as Kaplan-Meier curve analysis. Single-cell RNA-sequencing (scRNA-seq) analysis was performed to explore cell types in UCEC, and the AUCell algorithm was used to investigate the activity of CCNA2 in different cell types. RESULTS: A total of 32 in-house UCEC and 30 normal endometrial tissues as well as 720 UCEC and 165 control samples from public databases were eligible and collected. Integrated calculation showed that the CCNA2 expression was up-regulated in the UCEC tissues (SMD = 2.43, 95% confidence interval 2.23∼2.64). E2F1 and FOXM1 were identified as transcription factors due to the presence of binding peaks on transcription site of CCNA2. CCNA2 predicted worse prognosis in UCEC. However, CCNA2 was not an independent prognostic factor in UCEC. The scRNA-seq analysis disclosed five cell types: B cells, T cells, monocytes, natural killer cells, and epithelial cells in UCEC. The expression of CCNA2 was mainly located in B cells and T cells. Moreover, CCNA2 was active in T cells and B cells using the AUCell algorithm. CONCLUSION: CCNA2 was up-regulated and mainly located in T cells and B cells in UCEC. Overexpression of CCNA2 predicted unfavorable prognosis of UCEC.


Asunto(s)
Ciclina A2 , Neoplasias Endometriales , Humanos , Femenino , Ciclina A2/genética , Ciclina A2/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Pronóstico , Persona de Mediana Edad , Análisis de Matrices Tisulares/métodos , RNA-Seq , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Análisis de Expresión Génica de una Sola Célula
2.
World J Clin Oncol ; 15(1): 62-88, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292662

RESUMEN

BACKGROUND: Transcatheter arterial embolisation (TACE) is the primary treatment for intermediate-stage hepatocellular carcinoma (HCC) patients while some HCC cases have shown resistance to TACE. AIM: To investigate the key genes and potential mechanisms correlated with TACE refractoriness in HCC. METHODS: The microarray datasets of TACE-treated HCC tissues, HCC and non-HCC tissues were collected by searching multiple public databases. The respective differentially expressed genes (DEGs) were attained via limma R package. Weighted gene co-expression network analysis was employed for identifying the significant modules related to TACE non-response. TACE refractoriness-related genes were obtained by intersecting up-regulated TACE-associated and HCC-associated DEGs together with the genes in significant modules related to TACE non-response. The key genes expression in the above two pairs of samples was compared respectively via Wilcoxon tests and standard mean differences model. The prognostic value of the key genes was evaluated by Kaplan-Meier curve. Multivariate analysis was utilised to investigate the independent prognostic factor in key genes. Single-cell RNA (scRNA) sequencing analysis was conducted to explore the cell types in HCC. TACE refractoriness-related genes activity was calculated via AUCell packages. The CellChat R package was used for the investigation of the cell-cell communication between the identified cell types. RESULTS: HCC tissues of TACE non-responders (n = 66) and TACE responders (n = 81), HCC (n = 3941) and non-HCC (n = 3443) tissues were obtained. The five key genes, DLG associated protein 5 (DLGAP5), Kinesin family member 20A (KIF20A), Assembly factor for spindle microtubules (ASPM), Kinesin family member 11 (KIF11) and TPX2 microtubule nucleation factor (TPX2) in TACE refractoriness-related genes, were identified. The five key genes were all up-regulated in the TACE non-responders group and the HCC group. High expression of the five key genes predicted poor prognosis in HCC. Among the key genes, TPX2 was an independent prognostic factor. Four cell types, hepatocytes, embryonic stem cells, T cells and B cells, were identified in the HCC tissues. The TACE refractoriness-related genes expressed primarily in hepatocytes and embryonic stem cells. Hepatocytes, as the providers of ligands, had the strongest interaction with embryonic stem cells that provided receptors. CONCLUSION: Five key genes (DLGAP5, KIF20A, ASPM, KIF11 and TPX2) were identified as promoting refractory TACE. Hepatocytes and embryonic stem cells were likely to boost TACE refractoriness.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 2071-2085, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36914902

RESUMEN

Nitidine chloride (NC) is effective on cancer in many tumors, but its effect on bladder cancer (BC) is unknown. We conducted cell function experiments to verify the antineoplastic effect of NC on BC cell lines (5637, T24, and UM-UC-3) in vitro. Then, mRNAs of NC-treated and NC-untreated BC cells were extracted for mRNA sequencing. Differentially expressed genes (DEGs), expression analysis, and drug molecular docking were conducted to discover the target gene of NC. Finally, functional enrichment was analyzed to explore the underlying mechanisms. NC dramatically inhibited proliferation, migration, and invasion, and it induced apoptosis and arrested the S and G2/M phases of BC cell lines. Lymphocyte antigen 75 (LY75) appeared to be the target of NC. LY75 was highly expressed and had the ability to distinguish BC tissue from non-cancerous tissue. Then, drug molecular docking confirmed the targeting relationship between NC and LY75. Gene enrichment analysis showed that the downregulated genes, after being treated with NC, were mainly enriched in pathways relevant to cell pathophysiological processes. NC inhibits BC cell proliferation, migration, and invasion, induces apoptosis, and arrests cell cycles by downregulating the expression of LY75. This study provides molecular and theoretical bases for NC treatment of BC.


Asunto(s)
Transducción de Señal , Neoplasias de la Vejiga Urinaria , Humanos , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Proliferación Celular , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Apoptosis , Linfocitos , Movimiento Celular
4.
BMC Pulm Med ; 22(1): 300, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927660

RESUMEN

BACKGROUND: Little is known about the relationship between integrin subunit alpha V (ITGAV) and cancers, including small cell lung cancer (SCLC). METHODS: Using large sample size from multiple sources, the clinical roles of ITGAV expression in SCLC were explored using differential expression analysis, receiver operating characteristic curves, Kaplan-Meier curves, etc. RESULTS: Decreased mRNA (SMD = - 1.05) and increased protein levels of ITGAV were detected in SCLC (n = 865). Transcription factors-ZEB2, IK2F1, and EGR2-may regulate ITGAV expression in SCLC, as they had ChIP-Seq (chromatin immunoprecipitation followed by sequencing) peaks upstream of the transcription start site of ITGAV. ITGAV expression made it feasible to distinguish SCLC from non-SCLC (AUC = 0.88, sensitivity = 0.78, specificity = 0.84), and represented a risk role in the prognosis of SCLC (p < 0.05). ITGAV may play a role in cancers by influencing several immunity-related signaling pathways and immune cells. Further, the extensive pan-cancer analysis verified the differential expression of ITGAV and its clinical significance in multiple cancers. CONCLUSION: ITGAV served as a potential marker for prognosis and identification of cancers including SCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Integrinas/metabolismo , Neoplasias Pulmonares/patología , Pronóstico , Carcinoma Pulmonar de Células Pequeñas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...